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P. 0. Box 808, Livermore, California 94550 USA

ABSTRACT

The two and three dimensional contact algorithms used ;n the finite
element programs developed at the Lawrence Livermore National Laboratory
are described in this paper. We are interested in both static contact
and dynamic impact problems and, consequently, have pursued the
development of two different algorithms. The first, based on the
hydrocode technology of the sixties, is implemented in our two and three
dimensional explicit finite element codes. The second, a symmetric
penalty treatment, is used in our implicit codes and is optional in the
explicit codes. The penalty methods are used to obtain solutions to
almost all of our structural problems but we find that the hydrocode
approach is vastly superior if pressures greatly exceed the yield
strength., Examples are provided to show practical applications of both
approaches.

1. INTRODUCTION

The ability to treat structural problems where adjacent components

may independently slide, separate, and impact along material interfaces
is crucial in many varied technical fields. In weapons design, relevant

problems include the structural response of gun fired projectiles,
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laydown bombs, and a variety of shape charge designs of efither the jet
or fragment type. The nuclear industry analyzes the impact of shipping
casks containing radioactive materials, pipe to pipe impact, and soil-
structure interaction problems. Crashworthiness in the automotive and
alrcraft industry is another important area, as is biomechanics. The
contact-impact capability has always been an important aspect of both
the implicit and explicit finite element codes [1-4] developed at the
Lawrence Livermore National Laboratory, where nearly all our
applications depend on 1t. Our codes use well over 1000 CPU hours of
LLN. Cray time per year, but considerably more would be used 1f it were
available to the structural analysts. Our need for more analysaes leads
us to continually improve the speed and efficiency of the solution
algorithms, relyipg to a large extent on ideas from the literature and
our own research, including a considerable amount of numerical
experimentation. Today, we can solve most two and three dimensional
contact-impact, finite strain, plasticity probIem; of interest to us
with almost complete confidence that no insurmountable numerical
difficulties will arise.

The development of reliable implicit codes to do contact problems
requires a soqu global solution strategy. We have 1mp1emente2_mod1fied
Newton, full Newton, and quasi-Newton iteration schemes; the latter of
which includes the BFGS [5] and Broyden's [6] methods. In our
experience, the quasi-Newton line searches also contribute to the fast
convergence of the modified and full Newton schemes. In three
dimensions, we have ruled out full Newton as a viable option due to the

extreme expense of reforming and factoring a large stiffness matrix for
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each iteration. We now regularly use quasi-Newton methods with frequent
reformations of the stiffness matrix. By optimally coding and fully
vectorizing the stress divergence, the expense of equilibrium iterations
including 1ine search has been minimized.

Explicit hydrocodes use the viscosity method [7] to resolve the
details of shock wave propagation through the mesh with small time step
sizes dictated by the Courant stability limit. In three dimensions, our
typical applications use 20000 elements, 10000 to 100000 time steps,
with 20 to 30 percent of the nodal points contained in the contact
surface definitions. Effiéient. cheap algorithms are needed to make
such problems affordable. We use primitive elements (one stress point
hexahedrons), control the zero energy modes by the simpliest possible
hourglass control [8], and have an efficient and reliable contact-impact
algorithm. With faster and larger computers than presentlj available,
we would quickly expand our three dimensional analyses to a point where
the resolution 1s roughly equivalent to our two dimensiona]
counterparts, i.e., by a factor of 10 to 50, therefore the need for
efficient algorithms will continue for some time.

In developing general purpose contact algorithms for three
dimensional solutions, we quickly realized that the rigorous extension
of the two dimensional hydrocode algorithms though feasiSie. would be
too costly. Our earlier experience has shown that Lagrange multiplier
methods [9,10] did not necessarily preserve a smooth force distribution
across interfaces. The lack of a smooth force field excited the zero
energy modes in the primitive elements in nearly all the contact-impact

problems we solved, Furthermore, these modes usually stopped explosive-
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metal interaction computations, a major application for two dimensional
hydrocodes, early in the solution. Thus, we were Teft with the penalty
method as the method of choice. We now use the penalty approach in our
two and three dimensional implicit and explicit codes, but, because it
is not always suitable for applications involving high explosives, we
retatn an approach in our expiicit codes that is based in part on the
hydrocode methodology developed several decades ago.

In the development which follows, we shall first discuss the
hydrocode slideline methodology developed in the 60's. Our DYNA2D
algorithm, based on this work, has been extended to include impact and
separation along the slideline. We also implemented this methodology in
three dimensions but without the DYNA2D extensions. In Section 3, we
discuss the penalty method. In the last section, we present a few
applications. '

2. HYDROCODE METHODOLOGY

In two dimensions, the contact surfaces along a slideline appear as

1ines in the yz plane where y is the horizontal axis, and z is the
vertical axis and the axis of revolution in axisymmetric problems.
These 1fnes will be réferred to as the master and slave lines
respectively. Nodal points along the slave and master lines will be
referred to as slave and master nodes, respectively. Likewise, 1ine
segments joining adjacent slave and master nodes will be called slave
and master segments. Elements that have at least one side that 1s a
slave segment are called slave elements, and master elements are
similarly defined. Fig. 1 shows a typical interface. Slave nodes are

constrained to slide on or close to the master 1ine unless a tensile
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interface force develops. In the early slideline algorithms discussed
below, these 1ines were not allowed to separate. Designation of master
and slave lines is required as input for the slideline definitions in
most hydrocodes. A truly symmetric treatment such as used in our
penalty algorithm would make this distinction irrelevant, but we are

aware of no published treatments that are symmetric in the hydrocode

literature.

kth slave zone

kth slave segment

K k1 N\_ gigve line

E+1‘F__,,——tnnnnr“n9

fth master segment

fth master zone

Fig. 1. Typical interface.

In the finite elemenf computer implementation of the hydrocode
algorithms, no changes to the explicit solution scheme are reqdired
since it is possible to organize the algorithm such that the logic
external to the interface treatment applies to each node including the
slave and master nodes. The additional subroutines are called once
every time step following the calculation of the accelerations but prior
to updating the velocity vector.

The definition of the slave and master lines is accomplished 1in

DYNA2D by the user who provides a 1ist of nodal point numbers of the
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nodes lying on these lines. These numbers are given in the order they
appear as one moves along the interface keeping the slave 1ine on the
left. Slave elements are identified in the initialization phase of
DYNAZ2D by a search of the element connectivities and are ordered such
that the first element corresponds to the first slave node, the second
element to the second slave node, and so on.

In the sections which follow we will describe the algorithms of
HEMP [11], TOODY [12], TENSOR [13], as well as our own more recent
efforts in DYNA2D which is based on this earlier work.

2.1 HEMP Finite Difference Code

In 1964, Wilkins published the HEMP finite difference
equations based on the integral difference method [14]. A logically
regular mesh was used made from a grid of intersecting j and k l1ines
with slidelines permitted along k 1ines. A weakly coupled slideline
algorithm was given (the mﬁss in the slave elements was ignored), but
modifications were clearly outlined for incorporating strong coupling.
The actual modifications were included in a later revision of the
original document [15]. In Wilkins' approach, a pressure boundary
condition is applied to each segment of the master surface based on the
stress state in the slave elements across from the center of the master
element containing the segment. The pressure, P, for the tth master
segment is given by (see Fig. 2).

Py * (I'G)Pk + Py (2.1)
where p, and p,,; are the normal stress components in slave elements k

and k+1



k k
Pp = = (qu s1n °z g+l + 92,608 °z 4l - qyz51"2°z.g+l)
(2.2)

k+1 k +1

cos °z.z&1 sin2¢

S'Iﬂ 0 L, "+1)

T
Pear = = (oyy Ll t

and 0y 241 is the included angle taken counterclockwise between the y-
1 ]

axis and the line from ¢ to g+l. The parameter o is a dimensionless

distance

L
a=r (2.3)
where L is the distance between the element centers of slave elements k
and k+1 and L' is distance from the center of slave element k to the
intersection of a 1ine drawn from the center of the master element
£ normal to segment ¢ with the 1ine drawn between the slave element
centers. After repeating this procedure for each master segment, the
entire surface is accelerated as a free surface with a pressure boundary
| condition.

To attain the goal of a strongly coupled algorithm it is necessary
to include the mass of the slave surface. A constant factor, z, is

defined for the entire slideline and is used to scale the normal

component of the acceleration.

m
121 . ¢ 121 i
2« 2L , (2.4)
121 L

In Eq. (2.4), nm and ns are the total number of master and slave

elements along the slideline, and M;™ and M;S are the total mass in the
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ith master and slave elements respectively. The master node
accelerations are rotated into the local coordinate system of the node

and the normal acceleration is scaled to account for the added mass of

- —
Py =
I T

siave element k+1

- A
k ’ |
J! I
Fig. 2. Interpolation scheme to determine interface pressure
(Wilkins [11]).

——

n+l (2-5a)

= 1 (3¢ =4
a":. 3 (zz ¢:osel_1’£_,_1 -y, 51"°;.-1.z+1)

n+l_ =+ >+
ay Y, ¢:ose"_1.':,_1 tz, sino‘_l_.”1 (2.5b)

2

In the local coordinate system, the normal direction at point 2 is
perpendicular to a 1ine drawn from g2-1 to g+l. The superscript, +,

signifies that acceleration has been updated for the pressure

distribution. The global accelerations are calculated by rotating the
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scaled acceleration vector back to the global frame.

on+l _ on+l - aN*l

Yy at:. ¢:ose"__1’u_1 a“l s1ne’._1.,_,,_1 (2.6a)
sn+l

z - aNtl n+l (2.6b)
L anl cose,'__l"'_._1 + atz sine"._]_',._'_1

The final step 1s the update of the motion of the slave surface.
Each slave node k is moved tangentially, treating the master surface as
a symmetry plane in the configuration at time n, The slave nodes are
projected back on to the master surface, after the surface is updated
into the n+l configuration, along the j 1ine on the slave side that
contains the kth slave node. Velocities for the slave nodes are then

found by dividing the change in coordinates by the time step size.

9n+1/z . (yn+1 -y ™ Y
(2.7)
slnp ™! . z")/At""'l/Z

In early versions of HEMP, the constant z-factor of Eq. (2.4) was
used rather than a spatially (j) dependent factor. Of course, the
assumption of a constant mass distribution is not generally valid and
this was acknowledged by Wilkins. Another approximation involved the
computation of interface pressure from Eqs. (2.1) and (2.2) where only
two slave elements in the immediate vicinity of the master segment are
considered whereas a weighted average of all contiguous slave elements
would give a more realistic representation of p 2 Also. the pressure

normal to the master segment defined by rotating the planar stress is
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valid only in p]éne strain in constant Jacobian elements. Ignoring the
geometry of the element and the effects of hoop stress on P, can lead to

values that are too high or low. The methodology of TOODY and TENSOR
discussed below overcomes these weaknesses.

2.2 TOODY Finite Difference
In the TOODY implementation of sliding interfaces, Bertholf

and Benzley applied the integral difference method to each master node
along the sliding interface. During each cycle a new mesh is defined
overlaying the slave elements and matching the mesh density of the
contiguous master surface. We shall briefly outline our implementation
of the TOODY algorithm in DYNAZ2D,

First we must locate the coordinates of element k*, where the
asterisk superscript denotes phony elements and related variables that
are assumed to 1ie in the slave elements that overlap the master
nodes. The position of point j* in Fig. 3, for example, is determined
such that the ratio of the distances is constant when dk.z is the

distance from point k to ¢.

d d
ket . %0ad* 2.8)
A1 95,34 (2.8)

The stresses in the newly defined slave elements are based on
a length weighted interpolation along the master surface. Consider
Fig. 3 where slave element k is the first element to overlap master
segment & and underlie the phony element k*, Letting Sl denote the
length of the master segment ¢, n, denote the unit véctor tangent to
segment 2, and 51.k denote the vector drawn from 2 to slave

node k, we can define S".k for each slave node.
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slave element k
phony element k* -
j2 e

Fig. 3. A typical master segment where slave elements k, k+l, and k+2
contribute to the pressure load applied to master segment g. Phony
element k* is indicated by dashed lines.

sz.k " Lok ° 0y if Lok * 0y (1 (2.9a)
S".k = if Lok ° Ny <0 .(2.9b)
Spkel " Bkl B T Dy 00, < 5, (2.9¢)
Sg.ke1 ™ Sy W Lok 2025, (2.9d)

The stress contribution to slave element k* made by the stress in slave

element k, o'{j. is designated °';;,k and defined by Eq. (2.10).

"ﬁ.k = (S ke1 = Sgx) °|;j /5, (2.10)

If inequality Eq. (2.9d) is satisfied, a';;.k determines the stress in
phony element k*; otherwise, the contribution to the stress tensor of
the next overlapped slave element is added. For example, consider the

contribution of zone k+l to the phony k* zone.
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sz.k+2 = Lek+2 ° if Lake2 ° 0y € 5 (2.11a)
Sp,ke2 = Sy 1 Lykez * 025, (2.11b)
* +1
13,k+1 © (sg,k+2 - s;,k+1) °¥j (2.12)

If Eq. (2.11b) is unsatisfied, k again is incremented by 1, and the
procedure is given by Egs. (2.11)=(2.12) continues until Eq. (2.11b) is
satisfied. The stress tensor for k* becomes

k* _ n-1 k*

where n is the number of overlapping elements. After repeating this

k* k*

procedure to determine the bulk viscosity q° and density p° , we

proceed to the next phony element, k+l*, and repeat the procedure.

We enter the slideline logic in DYNA2D after computing the nodal
forces, and therefore the free surface accelerations of the slave and
master nodes are available by dividing the nodal forces by the nodal
masses. The tangential accelerations of the master nodes are calculated
as if they are free surface nodes, by using Eq. (2.5b). For the normal
acceleration, the master node 1s temporarily treated as an interior node
surrounded by the master elements and the phony slave elements. A new
acceleration (f: » ;+) is computed, and substituted into Eq. (2.5a) with
z=1, The modified global acceleration is calculated from a: 1 and
a™! by ustng Eq. (2.6). ¢
: In the update of the slave surface motion, Bertholf and Benzley
projected the slave nodes normally on to the updated master surface and
moved them tangentially according to their tangential velocities and

accelerations. This is illustrated in Fig. 4.



Ax't':l - (v2:1’2+ a't'k ") ™ e (2.14)

Using the configurations at n and n+l the slave node velocities are then

computed from Eq. (2.7).

- N

g+1n

- Y

Fig. 4. Update of the position of slave node k from time n to
n+l given by Bertholf and Benzley [12].

2.3 TENSOR Finite Difference Code

Of the hydrocode treatments discussed in this paper, the
TENSOR contact-impact algorithm comes closest to being symmetric. Like
the approach in TOODY, phony elements are defined that overlay the slave
elements and have interpolated values of stresses and densities. Phony
slave nodes are created at each master node and are assigned velocities

that are interpolated from the actual slave nodes. Consider master node
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£ and phony node z* as shown in Fig. 3. From rigid body dynamics we can
treat zf as a particle that has a zero normal velocity relative to a
rotating coordinate system with its origin at node & and write the

constraint equation for the normal acceleration.
a =a +a (2.15)

a, = Zuz l:(.v,_,..,-.v,_)coso"_l.!'+1 + (zz*'zz)“"z-l.zﬂ]

The normal direction at node ¢ is perpendicular to a 1ine drawn from

nodes 2-1 to 2+l, a. is the Coriolis acceleration term, and w, is the

angular velocity at node 2.

(2,,172,.106050, 1 041 = V1Y q)sine,
o, = 2 Aotal? 02 1.8 (2.16)
l‘lo'ﬁ'l

The expressions for the normal acceleratfons in terms of an

interface pressure p with Eqs. (2.15) and (2.16) are solved for p.

= (f - / 2.17
®n, ("z Bey / m, (2.17a)

an,* - (f"z* + scz) /m, (2.17b)

Cp = (2121081000 ) g1 ¥ Wpn ¥y q)eosey o (2.18)

Here, "z and MQ* are the lumped masses, and fn and fn are the normal
L [

components of the nodal forces at nodes ¢ and g* due to the internal

stress states.
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Eq. (2.17a) permits the normal acceleration of the master surface
to Be updated. This procedure is repeated for each master node. Since
the tangential component of the acceleration is unchangéd. the global
companents can be found from Eq. (2.6).

Unlike the HEMP and TOODY schemes, where the slave node is moved
with the master surface, the TENSOR scheme repeats the foregoing process
creating phony nodes and elements on the master side to accelerate the
slave surface. After the geometry is updated, slave nodes that do not
1ie on the master surface are projected normally to the surface. Normal
components of velocity are then reset by interpolating from the master

side.
2.4 DYNA2D Finite Element Code

The implementation in DYNA2D will be discussed in detail.
Ideas from HEMP, TOODY, and TENSOR underliie the current DYNA2D
algorithm. Although we feel that the TENSOR scheme may be superior on
some problems, it is considerably more expensive and is not easily
extended to handle impact problems.

Our current interface treatment may be outlined as follows:

1. Update the location of each slave node by identifying its
closest master node if it is not in contact with the master
surface or by identifying the first master node of the master
segment on which it lies.

2. For each master segment, identify the first overlapping slave
element.

3. Check each slave node that lies in contact with the master

surface for the existence of a tensile interface force, and if

the force is tensile, release it.
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7.

8.

Distribute one-half the mass of each slave element to the
appropriate master nodes if both slave nodes of the slave
segment associated with the element are in contact. If
neither of these slave nodes are in contact, distribute no
mass. If one slave node 1s in contact, distribute one-half
the mass lying between the contacting node and the center of
the slave segment of the slave element.

Whenever a slave node reaches the master surface, apply the
interface conditions to determine the post-impact velocity.
From the states of stress in the slave elements, compute a
distributed pressure for each master segment and the
equivalent nodal forces. A slave element must be in contact
with the master surface to contribute force.

For each slave node in contact with a master segment, compute
its tangential velocity and acceleration. Interpolate the
normal components of velocity and acceleration from the
adjacent master nodes.

For slave nodes not in contact with the master surface check
for penetration during the next time step and reduce the time

step size if necessary so that no slave node penetrates.

The above steps are explained below in more detail. A typical

interface is considered that is assumed to consist of g slave nodes,

ns-l slave elements, and N, master nodes. An assumption is made that

the master 1ine 1s sufficiently long so that slave nodes in contact with

the line will not slide off the end of the 1ine. In practice, master

1ine extensions are used to ensure that this is the case or, 1f the user



prefers, the slave nodes that slide off can be treated as free surface
nodes., If more than one interface exists, the procedures outliined here
are repeated for each 1interface.

2.4.1 Slave node search

Consider slave node k (1 < k < ns) and assume that a

search of the master 1ine has located the master node g (1 < ¢ < nm)
lying closest to k. If k is free, the next slave node is considered.
If k 1s s1iding on the master surface, the master segment that contains
k must be determined. Fig. 5 depicts a portion of the master surface
where slave node k and master node ¢ are labeled. Node k 1ies on the
segment bounded by 2-1 and 2, called master segment -1, if

Do-1,041 * Ngx 80 (2.19)

or on the segment bounded by 2 and ¢+l, called master segment g, if

Coe1,241 * Dk > 0 (2.20)

where L, ) g+ IS the vector from ¢-1 to g+l, and, 1ikewise, r . 1is the

vector from & to k.

L9-1,0+1

4

Lok

Fig. 5. Given that slave node k Ties closest to master node g,
the sign of the dot product of vectors r . and r, _, ., determines
the master segment that contains k. * ok
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2.4.2 Slave element search

This search identifies the first slave element to
overlap each master segment. Pressure contributions are made by all
slave elements that overlap the segment beginning with the element
identified here and ending with the last element that overlaps the
segment, In Fig. 6, a portion of the master 1ine is shown in contact
with the slave line.

Consider master segment ¢ . Recall that n, is the unit
vector tangent to master segment g and let k (1 < k < ns) be the
closest slave node to master node t. Slave element k is identified as
the first slave element to overlap master segment g if any of the

following tests are satisfied:

slave zone k-1 slave zone k

Lo,k

Fig. 6. A typical portion of the master line which shows slave
element k as the first element to overlap master segment .

«]8-



r en <0 for 1<k<n, -1 _ (2.21a)

~2,k ~g = s
.':.;,k *n, <0

for k = ng -1 (2.21b)
Dokel * N2 0
Lok * Ry 0

for k=1 (2.21c)

Cesl,k * g <O

If not, slave element k-1 is identified as the first overlapping element -

if
Lok-1 * Ry <0 for 1<k <ng -1 (2.22a)
r'l,k o £l> 0
for k = ng -1 (2.22b)

":'lok'l ) "!'l <0

If the test given by Egs. (2.21) and (2.22) fail, then no slave element
overlaps the master segment being considered.

2.4.3 Tensile interface force

Consider slave node k and assume that it lies in
contact with master segment 2. If the normal acceleration of the slave
node relative to the master segment is positive, a tensile force is

indicated, and the slave node is set free.

The normal acceleration of node k retative to

segment ¢ 1s a;:k » which is defined by Eq. (2.23).
L
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sa, = Z;k -(1-gq) ;'-‘: - o ;;m (2.23)

The local coordinate a 1s defined by Eq. (2.24).

LR N / (2" . '-:-l..!."'l) (2.24)

If o <eor if o > l-¢, where ¢ is a tolerance typically in the range

of .005, the angle °z-1,z+1 or °z,n#2 is used in place °z.z+1
determine the normal in Eq. (2.23). The right superscript, -, on nodal

quantities denotes the values of the quantities before interface

coupling is taken into account.

2.4.4 Addition of slave mass to master mass

The mass of the slave elements along the master surface
is attributed to the appropriate master nodes. Each slave element is

considered separately.
Consider the kth slave element. The mass to be

distributed is given by

m = % o A (2.25)

for plane strain. For axisymmetric problems, the DYNA2D Petrov-Galerkin
scheme 1s used and, in the above equations, Py and Ak are the density

and area of the kth slave element in the current configuration.

As indicated previously, the kth slave element corresponds
to the kth slave node. The kth slave node is being tracked by the
master node & and 1s, therefore, known to l1ie on master

segment £ bounded by master nodes g and #+l. Let

~20-



Lo ™ S,2 ° % o Sk %20
(2.26)

Lk.z = { if §k,z ° Ny

where Sk, is the vector from the kth slave node to the center of
master segment £ and N is the unit vector tangent to the slave segment

k bounded by slave nodes k and k+l.

R RTOR AN | Y (2.27)

Let L, denote the length of slave segment k: i.e., L = N * D kel
]
The mass attributed to master node ¢ from slave element k, mk.z' is

given by Eq. (2.28).

LV '-(Lk.z / Lk)mk it L. > Lk,z (2.28a)

or

My = My I Locl, (2.28b)

If inequality (2.28b) 1s satisfied, the next slave element is

considered; otherwise, let

be,ert = 8,001 "% T Sem %< (2.292)

e, ee1 = Lk W St %2k (2.290)

where §k.z+1 1s the vector from the kth slave node to the center of
master segment 2+1. The mass attributed to master node g+l from slave
element k is given by Eq. (2.30).

WL il T

M, 241 T k (2.30)
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If Eq. (2.29b) 1s satisfied, the next slave element is considered;
otherwise, the above procedure, using Eqs. (2.29) and (2.30) with
subscript & increased by one is repeated until Eq. (2.29b) 1s
satisfied. This procedure is 1llustrated in Fig. 7.

The foregoing procedure is modified slightly whenever a void exists
between the master surface and the kth element. If neither slave node
l1ies on the master surface, the next slave element is immediately
considered. If only one slave node is in contact, Ly is Set to one-half
of the length of slave segment, and, if node k is in contact, no other
changes are required. If node k+l is in contact, vector

Sk, 2+ (1=1,2,...) is computed with 1ts origin at the center of the

slave segment.

2.4.5 Momentum calculations

Assume slave node k impacts the master line. By
conserving momentum, the post-impact velocity of the master 1ine can be
obtained. The amount of mass associated with slave node k is taken as
one-half of the mass included from the center of slave segment k-1 of
slave element k-1 to the center of slave segment k of slave element k.
Let m:’z.denote the mass associated with slave node k that is attributed
to master node ¢. The mass that is distributed as described above
includes m;’z . The momentum calculation is made to determine the
normal velocity of master node 2 where the summation is performed over

all of the slave nodes contributing to the mass of master node t.

)G R 2
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+

My

= ; ™ot + "z = AHz + M‘ _ (2.32)
M, s the mass at node £, v;‘ and v, are the pre-impact velocities of
master node ¢ and slave node k, respectively.

ve = iz cose

n PRI MR LLLF ]

t (2.33)

V"k = Z; cosez_l.l*_l - yk S'lnel_l.”l

Defining the tangential component of the velocity with Eq. (2.34),
the global post-impact velocities of ¢ are given by Eq. (2.35)

vtz =¥, €088, 1 441 * 2, 51N0,, oy (2.34)
o - +
(2.35)
3t = vt cose - v, sine
Lt 'n 2-1,2+1 t 2=1,12+1

| 2 2

2.4.6 Master surface force distribution

The pressure acting on a master surface segment is
interpolated from the slave elements in contact with the segment. This
is accomplished with identical procedures as used to interpolate

stresses fer the phony elements in the TOODY scheme; therefore,
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Eqs. (2.9)-(2.13) apply here as well. However, rather than needing to
interpolate the entire stress tensor, bulk q, and density, we need only
interpolate the pressure distribution that equilibrates the normal
components of force along the slideline.

With reference to Fig. 3, the contribution of pressure
to master segment & made by slave element k 1s designated by p"’k and

defined by Eq. (2.36), where oi is the effective stress in slave element

k perpendicular to master segment ¢g.

Pok ™ Sgker = Sg k) °i /'S, (2.36)
f +f

k. "k Mkl

A (2.37)

We can determine the normal forces with Eq. (2.38), where

f ,f., f and fz are components of Ek defined by the integral
Yo & ka1 k+1

in Eq. (2.39) of the transpose of the strain displacement

matrix B multiplied by the element stress vector g over the current

geometry.

f =f_ cose

- f
n 2 2,2+ y L,2+1
k Tk ' k ’ (2.38)
f = f cose - f sine
Mol Fr BB Yy ot
£ = J 8% g av, (2.39)

k
If inequality Eq. (2.9d) 1s satisfied, Py k becomes the master segment
L 4

pressure, otherwise the contribution to the pressure of the next

overlapping slave element is computed.
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k+1
Pykel ™ (Spke2 = Seke1) % /S, (2.40)

If Eq. (2.11b) is not satisfied, k is incremented by 1 and the procedure
given by Eqs. (2.11) and (2.40) continues until Eq. (2.11b) is
satisfied. The total pressure for master segment ¢ 1s then given by

Eq. (2.41); the summation is performed over all of the slave segments in

contact with the master segment.

nil
P, * P
t qap bkM

The nodal forces acting at master node g due to the pressure

(2.41)

distribution on master segments -1 and & are

fy‘ " é Uzp-z, 1Py * (Zp49-2,00,] (2.42)

. _ 1

2.4.7 Interface forces and master surface acceleration

The interface force calculation is based on the TENSOR

algorithm. At master node g2, the normal interface force, Afn » Is given
3

by Eq. (2.43).

My Py Mg Ta oMM
af = < (2.43)
) M

L

Fo, = Mg(250056, ) pu1 = Y5100 1)
f"l - le COSQ‘_I"'_H' - fy" S"l‘lol_l"ﬂ_l
and a_ is the Coriolis acceleration defined in Eq. (2.15).
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Normal and tangential accelerations of the gth master node are:

a"z = (F"z - Af"z) / "z
(2.44)
atz =Y, ¢:ose"_1.l'+1 + z, s’"°z—1.z+1

The glabal accelerations can now be found from Eq. (2.6).

2.4.8 Slave node accelerations and velocities

The preceding steps have determined the motion of the
master surface and have left unchanged the motion of the slave
surface. As might be expected, the motion of slave nodes not in contact
with the master surface 1s unaffected, but the motion of those slave
nodes in contact with the master surface must be adjusted to ensure that
the latter nodes remain so. In the procedure used here, the velocities
and accelerations normal to the master line are reset. Although no |
guarantee exists in the present algorithm that slave nodes will remain
exactly on the master surface, in practice, excursions away from the
master surface have proven to be negligible.

Considering each slave node in turn, the first step is
to compute the tangential velocity and acceleration. For the kth slave
node on the tth master segment, these quantities are given by

Eq. (2.45), where ¥ measures the angle of the slideline at the location

of node k.
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vkt = i; cosy, + i; siny, _
(2.45)

akt = Y cosy + 2z, sin!k

We shall discuss the choice of ¥ later. The normal components of -
velocity and acceleration are interpolated from the master nodes. For
example Eq. (2.46) defines the normal component of the velocity for node

k sliding on master segment 2.

vkn = (l-uk) [i‘ cosy, - y‘ sinwk]
(2.46)

*a [izﬁl cosy, - 91*1 sinwk]

A normal acceleration component, akn, is likewise defined. After the
tangential and normal components of the acceleration and velocity are
known, the new accelerations are given by Eq. (2.47), where the last
term is the Coriolis term and ikr, ikr define the relative velocities

between master segment ¢ and node k.

;I"'*'l = .-a"t cosy, - akn sing, - Z“ik,. 2
;:-*1 = akt siny + akn cosy + Zuikr

ws W, ") /Sy (2.48)
B = I - Ooqddy - o 9y (2.4
ikr = - (o) 2, - o 2y,
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The new velocities are the by now familiar combination of the tangential

components from the slave side and normal components from the master

side.

Y = vkt cosy, - vkn sinvk
(2.50)

Z =V siny, + v, cosy
k kt k kn k

Throughout the development of our siideline logic we have studied
the choice of % on the results of a large number of applications. In

our first implementation of the slideline logic we set

Y " 8,241 €< q < l-e
W® 01,841 @ <e (2.51)
W * °z,z+2 o > l-¢

where ¢ is typically set to 10'3. We found that this choice created
numerical noise in some calculations, usually in the form of
hourglassing, and that computing W as the normal to a quadratic curve

through the closest master node and two adjacent nodes eliminated much

of the noise. If ¢ 1s the closest master node then Eq. (2.52) is the

parametric equation for a parabola where the parametric coordinate g 1s
bounded in the interval from -1 to 1 inclusive. Angle % is now based

on the slope of Eq. (2.52).

y(g) = % Ele-l)y,; + (l-ez)aql é E(erl)y,yy
(2.52)
1 1
2

2(g) = § &(e-1)z, ; + (1-Z)z, + § elesllz,,
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homeos” s e’ - @, (2.53)

We assume that node k is sliding on master segment 2. If g+l is the
closest node to k, the foregoing procedure Egs. (2.52)-(2.53) is
repeated with ¢ increased by 1 and ¢ is o -1. Eqs. (2.52) and (2.53)
are used in the public domain versions of DYNA2D.

Using Eq. (2.53) to determine " leads to the same kind of noise as
Eq. (2.51) though not as pronounced. We can jllustrate this noise with
the concentric spheres in Fig. 8 which have the-bulk modulus of steel
and no shear strength. The spheres are 1 centimeter thick and 7.5 and
8.5 centimeters in radius. A 100 kilabar pressure is applied to the
outer surface to push the spheres inward. The result is shown in
Fig. 9, where the slave surface, chosen to be the inner surface, has
elements that have hourglassed and sheared. This anomalous behavior 1is
related to our choice for y . If we choose the normal to the slave
surface at k, Eq. (2.54), we get the more pleasing result in Fig. 10.

W = Oo1,k+1 (2.54)

We can expect separation between the master and slave surfaces if
normals are based on Eq. (2.54). In many of our calculations we have
found the separation or inner penetration to be very small, but in other
calculations the separation or overlap is noticeable. In these latter
cases very slight adjustments to the normal slave velocity is all that
fs necessary to keep the slave nodes close to the surface., We now use
the normal distance from the slave node to the master surface to compute

the velocity change required to close the gap, and we adjust the normal

«30-



?7.800

=-2.000

=3.000

=».000

-2.000

=2.000

-1.000

-0.000

=5.900

Fig. 8. Initial geometry of concentric spheres.
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A 100 kbar pressure

is applied to the outer surface to push the spheres inward.
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Fig. 10. Proper interface normal leads to the correct result.
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slave velocity each time step by 1 percent of this change. Thus, the
slave node 1s never returned to the master surface; 1t is just kept
reasonably close. We have not found momentum conservation to be
significantly affected and, in fact, it has sometimes been better than

with our old approach.

2.4.9 Time step calculation

Before updating the configuration to t“"'l, every slave
node that is not in contact with the master 1ine 1s checked to determine
if it will penetrate the master 1ine between time t" and t"*l, If any
slave node penetrates, At”+ykis scaled back such that no slave node
penetrates but at least one slave node reaches the master surface. At
the beginning of the next time step impact conditions are applied to the
slave nodes that reached the master 1ine and constraints are imposed to
keep the nodes in contict with the master line.

Consider slave node k that is close to but not in contact
with the master line at time t". The first step in determining
penetration is to locally update the geometry of node k and nearby
master nodes. After the closest master node is located, the master
segment associated with slave node k is found using Eqs. (2.18) and
(2.19). Let master segment ¢ be associated with slave node k. If N

Eq. (2.55) 1s satisfied, where m, is the outward drawn unit vector

normal to master segment &, penetration has occurred.

Lok om£<0 (2.55)

If slave node k penetrates master segment g, the maximum

permissible time step size is computed that will not allow node k to
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penetrate. This time step size is found by equating the slope of master
segment £ with the 1ine drawn from node ¢ to k at t" + at. If the

velocities are assumed to be constant, a quadratic equation is obtained

for aAt.
2.4.10 Simplifications

We have attempted to increase the efficiency of the

foregoing algorithm by making two reasonable approximations. In the
first we replace the calculation for m, in Eq. (2.25) with an

approximation using the mass matrix.
* *
m =g L (m + my) (2.56)

*
me = My /10 knl
. M, is the global mass at slave node k, and lﬁk-l,k+1| denotes the

length of the vector from k-1 to k+l. In the second approximation we

replace calculations to obtain °§ in Eq. (2.37) by

oi = é (a: + o:+1) (2.57)

*

Fyk and sz are the global forces at slave node k before accolnting for

the slideline coupling.

We have vectorized the slideline logic that includes these
simplifications and, consequently, have reduced the cost significantly

for what seems to be only a minor difference in the results due to the

averaging.
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2.4,11 Extension of hydrocode algorithm to 3D

We have implemented the sliding interface algorithm
without separation between the surfaces into DYNA3D. Because we know of
no reasonable way to economically map the slave surface on to the master
surface for the distribution of mass and pressure, the simplifications
of Section 2.4.10 are used in the 3D extension.

3. PENALTY FORMULATION

The computer implementation of the penalty formulation in explicit
codes is straightforward. The interface subroutines are called each
time step prior to computing the accelerations. In the implicit codes
the interfaces are treated 1ike another element class. We reform the
stiffness matrix at the beginning of each time step taking into account
the changing connectivity along the interfaces; consequently, we do not
limit the relative displacement. We also reform during the equilibrium
iterations if convergence problems arise. Bandwidth minimization is
performed at the beginning of the problem and is based on the initial

coupling across the interface.

In two dimensions, the siideline definitions are identical to the
DYNA2D hydrocode aigorithm. In three dimensions, all triangular and
quadrilateral segments in each surface are required as input with an
arbitrary ordering of the segments. In the development that follows, we
refer to one surface as the slave and the other as the master even
though the symmetry of our approach eliminates any bias in this choice.

Initialization of the penalty method in two dimensions involves
several steps. First, we reverse the ordering of the nodes along the

slave side so that as one moves along the slave surface in the order
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that the slave nodes appear, the master surface will be to the left, and
then we check each master and slave node for penetration through the
slave and master surfaces, respectively. Penetrating nodes are
projected back on to the surface. Finally, for each master and slave
segment, we find the element that contains the segment in its
connectivity and compute a segment stiffness as a function of the bulk
modulus and thickness. The second step eliminates the possibility of
large forces developing due to interpenetration of nodes along a curved
interface due to discretization differences across the interface, and
the third step ensures a reasonable value for the interface stiffness.

In the three dimensional initialization we first gather all the

slave and master nodes into arrays and store the segment numbers that
contain each node. The second and third steps are the same.

A general interface treatment using penalty functions mny'be

outlined as follows:

1. For each slave node, Ng» locate the closest master node, Npe and
check the master segments that include n, to identify the
segment, if any, containing ng.

2. Locate the position of the slave node on the master surface.

3. Determine if ng has penetrated the master segment. If so,
compute and add an interface force to the right hand side and,
if the global stiffness matrix is being reformed, add in an
interface stiffness matrix.

4. Repeat steps 1-3 for the master nodes.

3.1 Determination of Master Segment Containing Slave Node

Consider a slave node, ng, sliding on a piecewise smooth master

surface and assume that search of the master surface has located and



stored the master node, Mn® lying closest to Ng e Fig. 11 depicts a
portion of a master surface with nodes L and g labeled. To minimize
the operation count, the search for the closest node only includes the
closest node from the previous time step, nm°]d and its surrounding

nodes which are available in the connectivities of the segments that

contain nm°‘d.
If mg and ng do not coincide, ng can usually be shown to Tie in

a segment s; via the following tests:

(61 x8) (g4 xga) > 0
(3.1)

(cy x8) » (gxcqy) >0

Vectors 4 and Ci41 2re along edges of s; and point outward from me, and
vector s is the projection of the vector beginning at Mg > ending

at n., and denoted by g, on to the plane being examined (see Fig. 12).

s*=¢-(g-mmn

= i * %441 (3.2)
~ Ty * Sl )

Since the sliding constraints keep Ng close but not necessarily on the
master surface and since ng may 1ie near or even on the intersection of
two master segments, the inequalities of Eqs. (3.1) may be inconclusive,
{.e., they may fail to be satisfied or more than one may give positive
results. When this occurs ng is assumed to 1ie along the intersection
which yields the maximum value for the quantity defined in Eq. (3.3).

'g'l'é.,_.li 1=1,2,3,4... - (3.3)



x(x4)

Fig. 11. In this figure, five master segments can harbor slave
node n, given that n_ is the closest master node.
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The test Eq. (3.1) is first applied to the master segment that contained
the slave node in the previous step. If Eq. (3.1) is not satisfied,
then each master segment that includes n, is checked. Our

implementation does not 1imit the number of segments that may contain

3.2 Determination of the Contact Point

Assume that a master segment has been located for slave node,
Ng» and that Ng 1s not identified as lying on the intersection of two
master segments. Then we may fdentify the “contact point“, defined as the
point on master segment which is closest to Ng. Each master surface

segment, sy has a bilinear parametric representation.

L = fl (5.“)11 + fz(E-ﬂ)iz + f3(€nﬂ)13 _ (3-4)
L
f;(&n) = jzl ¢ X (3.5)

¢;(&:m) -71; (1 + ggg) (1 + nmy)

EJ. "y take on thefr nodal values at (%1, +1), and xij is the nodal
coordinate of the jth node in the ith direction, see Fig. 13. Note

that r is at least once continuously differentiable and that the normal is

nonzero.
ar

Thus, r represents a master segment that has a unique normal whose direction

depends continuou§ly on the points of s;.
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Let t be a position vector drawn to slave node ng and assume that the
master surface segment s; has been identified with ng. The contact point

coordinates (q:, qc) on s; must satisfy Eq. (3.7).

ar

'a—;- (gom) [t - r(gon)] =0 (3.7a)
ar

o (&on) < [t - F(gon )1 =0 (3.7b)

The physical problem i1s illustrated in Fig. 13 which shows ng 1ying above
the master surface. Eqs. (3.7a) and (3.7b) are readily solved for g 1n
terms of N . One way to accomplish this is to solve Eq. (3.7a) for & in
terms of n. , and substitute the result into Eq. (3.7b). This yields an
equation in LN which is presently solved numerically in DYNA3D.

3.3 Nodal Force Update

Each slave node is checked for penetration through its master

segment. If the slave node does not penetrate, nothing is done, but if it
does, an interface force is applied between the slave node and its contact

point. The magnitude of this force is proportional to the amount of

penetration.

Penetration of the slave node Ngs» through the master segment Si»

which contains its contact point is indicated if 2 is negative.

t=n o - r(g.m]<O (3.8)
or ar o o
= leen) = (Exg / x5
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Fig. 13. Location of contact point when n. 1ies above master segment
is normal to the master segment at the contact point.

If slave node ng has penetrated through master segment sy, we add an

interface force vector that 1is normal to the master segment and l1inearly

L
dependent on the penetration to node ng.



An equal and opposite force is distributed over the master segment nodes

acéording to Eq. (3.10).

1] = - g am)e ife<0 (3.10)

The stiffness factor k; for master segment s; 1s given in terms of the bulk

modulus, K1, the volume V1. and the face area, A1, of the element that
contains Sy as

ferK,;A
- .§§1f_f (3.11)

where fg; is a scale factdr for the interface stiffness and is normally

k

defaulted to .10. Larger values may cause instabilities unless the time

step size is scaled back 1n the time step calculation.

4, EXAMPLES
We present in this section five examples from diverse applications

where contact-impact algorithms are necessary. None of these examples were
run jus; for this paper; they were run on the production versions of our
codes in the production-oriented engineering environment at LLNL.
1. Mass Focused Projectiles
Our first example demonstrates the hydrodynamic approach to

contact implemented in DYNA3D,
Mass focused projectiles, also called Misznay-Schardin munitions,

are being designed as anti-armor devices. This kind of munition uses

high explosives to accelerate a metal plate to a high velocity. As the

«44-



plate accelerates, it is designed to deform into a cohesive shape that
can penetrate thick armor. Furthermore, its shape must provide
aerodynamic stability to accommodate long standoffs from the target.
Computer codes are used to iteratively develop a design with all the
desired properties. Testing of the design follows to insure that
everything performs as predicted.

Tuft and Godfrey [16], have computed fully three-dimensional
geometries such as shown in Figs. 14 and 15 with two planes of
symmetry. The time sequence of two liner cross sections is shown in
Fig. 16.

Slidelines are used between the high explosive and the 1iner and
the case to allow the gas from the explosion to expand without
restriction. The deformed shape of the liner is very sensitive to the
pressure history, therefore both-the detonation wave front and |

explosive-1iner interface must be modeled carefully.
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Fig. 14, Basic geometry for 3D mass focused projectile device.
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Fig. 15. Three-dimensional finite-element mesh.
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2. Bellows Forming Analysis
This example 11lustrates a problem involving a large amount of

sliding along the contact interface. The purpose of the calculation is
to determine the pressure required to collapse the stainless steel
sleeve into the elastic die. Fig. 17 depicts the calculational mesh
and boundary conditions.

A pressure loading is applied in 43 equal increments to a peak
value of .580 GPa and is removed in two increments for a total of 45
steps. When the pressure reaches .483 GPa, the sleeve 1s completely
collapsed. A sequence of deformed shapes is shown in Fig. 18 followed
by the final configuration in Fig. 19.

The analysis was performed using NIKE2D; the slideline uses the

the penalty formulation,
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Fig. 17. Initial configuration.
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(a) (b)

(c) ' (d)

Fig. 18, Deformed shapes corresponding to pressures of (a)
.138 GPa, (b) .276 GPa, and (d) .552 GPa.
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Fig. 19. Final deformed shape after removal of pressure,
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3. METALLIC 0-RING

In a recent application, standard metallic O-rings were failing to

produce a reliable seal. The designers felt that these failures were due to
large cutouts in one of the flanges. It was felt that these cutouts, which
are required for the installation gas transfer fittings, reduced the
rigidity of the flange to the point where the interface pressures were
insufficient for sealing.

The following figures show the three-dimensional model which was used
to analyze the problem. The mesh in Figs. 20 and 21 consists of 4816 nodal
points and 3304 elements. Slidelines are defined between the upper portions
of the 0-ring and the upper flange, the lower portion of the O-ring and the -
lower flange, and the outer portion of the O-ring and the corresponding
sealing surface of the lower flange, Additionally, a slide-surface is
located between the two flanges. The model extends from the éenter of one
of the cutouts to the center of a corresponding bolt hole. Symmetry planes
are used at each of these locations to prov}de boundary conditions.

The total loading of the model occurs over fifteen steps. The first
four steps crush the O-ring. During this portion of the loading, the 0-ring
undergoes large plastic strain and the interface pressures begin to
develop. The next two steps are used to finish closing the gap between the
two flanges. Steps eight through ten finish the bolt loading of the
flanges. The upper bolt loads are sufficient to cause some plastic
deformation of the upper flange. The last five steps are used to apply the
gas pressure to the inside of the model. This pressurization partially

unloads the 0-ring. Fig. 22 shows a result of the calculation.
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The NIKE3D analysis clearly showed that the cutouts were not causing

the failures.
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Fig. 20.

View of mesh showing bolt hole.
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Fig. 21. Close-up view of O-ring at start of calculation.
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Fig. 22. Deformed 0-ring at the completion of the sixth time step.
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4. PIPE WHIP

Our final penalty formulation example uses the recently implemented
shell elements in NIKE3D.

Current Nuclear Power Plant design regulations require pipes to be
designed against pipe whip. It 1s postulated that in the event of pipe
break, the high pressure fiuid in the pipe could cause the pipe to swing and
impact another pipe. The Nuclear Regulatory Commission has provided multi-
year funding to Livermore to study this problem.

A sample problem was developed to test the ability of NIKE3D to solve
pipe impact problems. The problem consists of two steel pipes both having a
thickness of 0.432 inches, 3.3125, a Tength of 50 inches. One pipe is
oriented horizontally and completely fixed at both ends, and a yield
strength of 10° psi, and a hardening modulus of 103 psi. The other pipe
swings about one end in a plane normal to the horizontal pipe. The angular
velocity at the time of impact is 50 radians/sec. Shell elements were used
in the mesh with one plane of symmetry. Two-hundred steps were used with a
termination time of 10 ms. Results from the pipe impact problem are shown
in Figs. 23-25. The pipe begins to rebound at approximately 7 ms.

Several experiments on pipe impacts were performed for the Nuclear
Regulatory Commission that could provide a basis for verifying the shell

impact capability. Efforts were made to obtain the experimental data, but

we were denied reasonable access.
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Fig. 23. Sequence of deformed shapes in 2ms intervals.
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